Work in this area mainly concerns the identification of randomly heterogeneous media using the recorded wave field. Parallel computational codes are developed to (i) generate realizations of random media; (ii) simulate elastic wave propagation; and (iii) identify parameters of the propagating medium.
- Numerical simulation of randomly heterogeneous 3D media using random fields.
- Numerical simulation of elastic wave propagation in random media using the spectral element method.
- Resolution of elastic wave transport equations using the Monte Carlo method (random walk).
- Identify the statistical properties of random media using the wave field recorded on the surface.
- Identification of mechanical properties using the FWI (full waveform inversion) method.
RESOURCES USED
- GLiCID computing mesocenter (Groupement Ligérien pour le Calcul Intensif Distribué): https://www.glicid.fr/
- Git (Monte Carlo simulation code, ongoing project with Régis Cottereau and Lucio Corrêa (LMA)) : https://github.com/cottereau/RadiativeTransferMonteCarlo
- YouTube channel : https://youtube.com/shahramkhazaie
ONGOING PROJECTS
- PhD thesis by Ningyue SHENG (ministerial grant), directed by Sylvain Fréour, co-supervised by Mathilde Chevreuil and Sharham Khazaie.
INVOLVED RESEARCHERS
- Mathilde CHEVREUIL
- Sylvain FREOUR
- Shahram KHAZAIE
- Rian SEGHIR
LATEST PUBLICATIONS
- Khazaie, S. and Cottereau, R., 2020. Influence of local cubic anisotropy on the transition towards an equipartition regime in a 3D texture-less random elastic medium. Wave Motion, 96, p.102574
- Sheng, N., Khazaie, S., Chevreuil, M. and Fréour, S., 2023. On the statistical behavior of homogenized properties and ultrasonic phase velocities in random polycrystals. International Journal of Solids and Structures, 285, p.112531.
- Khazaie, S., Wang, X., Komatitsch, D. and Sagaut, P., 2019. Uncertainty quantification for acoustic wave propagation in a shallow water environment. Wave Motion, 91, p.102390.