Multiphase Flow through a Granular Material under Hydro-Mechanical Loading

Rana AL NEMER, Giulio SCIARRA, Julien RÉTHORÉ

Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183

Experimental means

Results

Air infiltration through water-saturated sand

Camera

Biaxial machine with hydro-mechanical control

- Simultaneous control of confining and three fluid pressures (Maximum pressure = 1600 kPa)
- Particular system for transmitting the confining pressure to the lateral borders of the sample
- Sample cell enclosing a specimen of (4 \times 5 \times 1.1) cm³ filled by **Fontainebleau sand NE34**

High-resolution optical system

• Camera of 50 MPx & Spatial resolution of $6.1 \,\mu\text{m/pixel}$ (1 grain of FB \approx (25-50) pixels)

- Drainage test procedure: 1. Initial confining pressure 50 kPa 2. Saturation with deaerated water
- 3. Skempton approach for full saturation: sequence of stepwise increments of Confining pressure P_{conf} & Pore water pressure P_w [Head et al., 1998]
- 4. Adjustment of effective stress to the desired value σ'_0
- 5. Induced-drainage by controlling

Test (1): $P_{cap} = P_a - P_w = 30$ kPa & $\sigma'_0 = P_{conf} - P_w = 120$ kPa \rightarrow Single localized infiltration

48

Test (2): $P_{cap} = P_a - P_w = 30 \text{ kPa } \& \sigma'_0 = P_{conf} - P_w = 40 \text{ kPa} \rightarrow \text{Double}$ localized infiltration

• Maximum acquisition frequency = 30 Hz

the <u>air</u> pressure P_a ($P_a > P_w$)

Volumetric strains averaged

within the developed finger

along the drainage process

[Al Nemer *et al.*, 2022]

Test (1): $\sigma'_0 = 120 \text{ kPa}$

Frame 5 13 21 29 Video

Results

Mechanical loading & Bi-phasic interface

Growth property: Invaded area

The detected interface, in this whole analysis, is determined by a customized robust algorithm based on the Mumford-Shah functional for segmentation analysis. [Mumford and Shah, 1989]

Morphological property: Corrugation amplitude

-		${\cal A}$ [pixels]
	Finger	(Left - Right)
		borders
	(1)	57-52
]	(2) Left	45-74
	(2) Right	58-56

Interface **topology** is not affected by the mechanical loading, but rather by the microstructure of the medium.

Results

Mechanical loading & Strain localization

0.1

- Volumetric strains calculated by FE-DIC [Réthoré, 2018]
- Bi-phasic flow induces localized strains
- Local strains: $\epsilon_{vol} > 0$: Dilation & $\epsilon_{vol} < 0$: Compaction
- Dense distribution in (1) vs. hollow distribution in both fingers of (2): $\nearrow \sigma'_0 \Rightarrow$ more new paths are opened
- Test (2): $\sigma'_0 = 40 \text{ kPa}$ - Left finger Right finger $\stackrel{loo_{ij}}{\rightarrow} \eta$ • $\mu \epsilon_{vol} > 0$: Dilation of the medium • $\mu \epsilon_{vol_{(1)}} > \mu \epsilon_{vol_{(2)}}$: $\nearrow \sigma'_0 \Rightarrow \nearrow$ Global average strain

Volumetric strains at the breakthrough time averaged within

Breakhthrough time is the time at which the air reaches the top of the sample **Transition zones* through the drainage process** 6000 5000 5000 4000 4000 3000 2000 2000 $500\ 1000\ 1500$ 500 1000 1500 500 1000 1500 Test (2): Right finger Test (1) Test (2): Left finger * Transition zones are consecutive surfaces invaded by the injected air.

Conclusions

• Unstable infiltration generates localized strains within the developed finger and induces an opening of the granular medium.

 Ψ [elements]

Test (1)

- The mechanical loading influences the preferential pathways of the injected fluid: the higher the applied effective stress is, the more local the percolation will be.
- The mechanical loading also influences the magnitude of the induced strains: the higher the applied effective stress is, the higher the strains will be.
- The mechanical loading has no influence on the interface morphology but rather on its growth.

Contact

Rana AL NEMER (rana.al-nemer@ec-nantes.fr); Giulio SCIARRA (Giulio.Sciarra@ec-nantes.fr); Julien RÉTHORÉ (julien.rethore@ec-nantes.fr)

